721035 = Cp = Yt CRNA-S-MCHE ### यांत्रिक इंजीनियरी (प्रश्न-पत्र-II) निर्धारित समय : तीन घण्टे अधिकतम अंक : 250 #### प्रश्न-पत्र सम्बन्धी विशेष अनुदेश (कृपया प्रश्नों के उत्तर देने से पूर्व निम्नलिखित प्रत्येक अनुदेश को ध्यानपूर्वक पढ़िये) इसमें आठ प्रश्न हैं जो दो खण्डों में विभाजित हैं तथा हिन्दी और अंग्रेजी दोनों में छपे हुए हैं। उम्मीदवार को कुल पाँच प्रश्नों के उत्तर देने हैं। प्रश्न संख्या 1 और 5 अनिवार्य हैं तथा बाकी प्रश्नों में से प्रत्येक खण्ड से कम-से-कम एक प्रश्न चुनकर तीन प्रश्नों के उत्तर दीजिये। प्रत्येक प्रश्न/भाग के लिए नियत अंक उसके सामने दिये गये हैं। प्रश्नों के उत्तर उसी प्राधिकृत माध्यम में लिखे जाने चाहिये, जिसका उल्लेख आपके प्रवेश-पत्र में किया गया है, और इस माध्यम का स्पष्ट अरना क उपर उपर वा एक पार इस माध्यम का स्पष्ट उल्लेख प्रश्न-सह-उत्तर (क्यू॰ सी॰ ए॰) पुस्तिका के मुखपृष्ठ पर निर्दिष्ट स्थान पर किया जाना चाहिये। प्राधिकृत माध्यम के अतिरिक्त अन्य किसी माध्यम में लिखे गये उत्तर पर कोई अंक नहीं मिलेंगे। प्रश्नोत्तर लिखते समय यदि कोई पूर्वधारणा की जाय, उसको स्पष्टतया निर्दिष्ट किया जाना चाहिये। जहाँ आवश्यक हो, आरेख/चित्र उत्तर के लिए दिये गये स्थान में ही दर्शाइये। प्रतीकों और संकेतनों के प्रचलित अर्थ हैं, जब तक अन्यथा न कहा गया हो। प्रश्नों के उत्तरों की गणना क्रमानुसार की जायेगी। यदि काटा नहीं हो, तो प्रश्न के उत्तर की गणना की जायेगी चाहे वह उत्तर अंशतः दिया गया हो। प्रश्न-सह-उत्तर पुस्तिका में खाली छोड़ा हुआ पृष्ठ या उसके अंश को स्पष्ट रूप से काटा जाना चाहिये। # MECHANICAL ENGINEERING (PAPER-II) Time Allowed : Three Hours Maximum Marks: 250 # QUESTION PAPER SPECIFIC INSTRUCTIONS (Please read each of the following instructions carefully before attempting questions) There are EIGHT questions divided in two Sections and printed both in HINDI and in ENGLISH. Candidate has to attempt FIVE questions in all. Question Nos. 1 and 5 are compulsory and out of the remaining, THREE are to be attempted choosing at least ONE question from each Section. The number of marks carried by a question/part is indicated against it. Answers must be written in the medium authorized in the Admission Certificate which must be stated clearly on the cover of this Question-cum-Answer (QCA) Booklet in the space provided. No marks will be given for answers written in a medium other than the Wherever any assumptions are made for answering a question, they must be clearly indicated. Diagrams/Figures, wherever required, shall be drawn in the space provided for answering the Unless otherwise mentioned, symbols and notations carry their usual standard meanings. Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off. #### खण्ड—A / SECTION—A 1. (a) चित्र 1(a) में दर्शाये गये निकाय पर गौर कीजिये। दोनों कक्ष प्रारम्भ में 28 लीटर के समान आयतन के हैं, जिनमें क्रमशः वायु $(C_p = 1 \cdot 005 \text{ kJ/kg-K}$ तथा $C_v = 0 \cdot 717 \text{ kJ/kg-K})$ एवं हाइड्रोजन $(C_p = 14 \cdot 32 \text{ kJ/kg-K}$ तथा $C_v = 10 \cdot 17 \text{ kJ/kg-K})$ हैं। ये कक्ष एक घर्षणहीन पिस्टन, जो कि ऊष्मा अचालक है, के द्वारा अलग किये गये हैं। दोनों गैसें आरम्भ में 140 kPa तथा 40 °C पर हैं। वायु की ओर से इस प्रकार ऊष्मा दी जाती है कि दोनों गैसों का दाब 280 kPa तक पहुँच जाये। जहाँ से वायु को ऊष्मा दी जाती है उस सतह को छोड़कर कक्ष की सभी बाहरी दीवारों को रोधित किया गया है। वायु का अन्तिम तापमान ज्ञात कीजिये। चित्र 1(a) Consider the system shown in Fig. 1(a). The two chambers initially have equal volumes of 28 litres and contain air $(C_p = 1.005 \text{ kJ/kg-K})$ and $C_v = 0.717 \text{ kJ/kg-K})$ and hydrogen $(C_p = 14.32 \text{ kJ/kg-K})$ and $C_v = 10.17 \text{ kJ/kg-K})$ , respectively. The chambers are separated by a frictionless piston which is non-heat-conducting. Both the gases are initially at 140 kPa and 40 °C. Heat is added to the air side until the pressure of both the gases reaches 280 kPa. All outside walls of the chambers are insulated except for the surface where heat is added to air. Calculate the final temperature of > एक अभिसारी-अपसारी नॉजल में 'प्ररोध प्रवाह' क्या होता है? एक अभिसारी-अपसारी नॉजल में सम्पीड्य गैस के निर्गम वेग पर दाब अनुपात के प्रभाव को आरेख की सहायता से समझाइये। > What is 'choked flow' in a convergent-divergent nozzle? Explain, with diagram, the effect of pressure ratio on exit velocity of compressible gas in a convergent-divergent nozzle. 28 lita (D) / CRNA-S-MCHE/19 एक अक्षीय प्रवाह सम्पीडक, जिसके अन्तर्गम तथा निर्गम कोण क्रमशः 40° तथा 15° हैं, को 50% प्रतिक्रिया एक अक्षाय प्रवार राजा है। सम्पीडक का दाब अनुपात 6 : 1 है तथा समग्र समएन्ट्रॉपी दक्षता 0.80 है, क लिय अभिकारिया विशेष परिवार के लिय अभिय वेग अहीय वेग आद्योपांत समान हैं। यदि सभी पदों के लिये कृत कार्य गुणक 0.88 हो, तो फलक चाल का मान 210 m/s मानते हुए वांछित पदों की संख्या ज्ञात कीजिये। वायु के लिये $C_p=1\cdot005~\mathrm{kJ/kg-K}$ तथा $\gamma=1\cdot4$ लीजिये। An axial flow compressor with inlet and outlet angles of 40° and 15°, an axial now compressor and 15°, respectively has been designed for 50% reaction. The compressor has a respectively has been designed and exist velocity pressure ratio of 6: 1 and overall isentropic efficiency of 0.80, when inlet static pressure ratio of 0.1 and overland speed and axial velocity are constant temperature is 41 °C. The blade speed and s temperature is 41 C. The shall be shall be speed, find the number throughout. Assuming a value of 210 m/s for blade speed, find the number of stages required if the work done factor is 0.88 for all the stages. Take $C_p = 1.005 \text{ kJ/kg-K}$ and $\gamma = 1.4$ for air. 52 W/m-°C की ऊष्मीय चालकता वाले ढलवाँ लोहे से बने एक पाइप में गर्म जल 1.5 m/s के औसत वेग से प्रवाहित हो रहा है। पाइप के आन्तरिक तथा बाह्य व्यास क्रमशः 3 cm तथा 3·5 cm हैं। 15 °C तापमान (d) वाले तलघर के 15 m लम्बे हिस्से से पाइप गुजरता है। पाइप के तलघर से गुजरने से जल का तापमान 70 °C वाले तलघर के 15 m लम्ब ।हस्स स पाश्य पुणाला ए। गर्प से घटकर 67 °C रह जाता है। पाइप की आन्तरिक सतह पर ऊष्मा अंतरण गुणांक 400 W/m²-°C है विश्वप्र रे की बाह्य सतह पर संयुक्त संवहन तथा विकिरण ऊष्मा अंतरण गुणांक को निर्धारित कीजिये। Hot water is flowing through a pipe made of cast iron having thermal conductivity of 52 W/m-°C, with an average velocity of 1.5 m/s. The inner and outer diameters of the pipe are 3 cm and 3.5 cm, respectively. The pipe passes through a 15 m long section of a basement whose temperature is 15 °C. The temperature of the water drops from 70 °C to 67 °C as it passes through the basement. The heat transfer coefficient on the inner surface of the pipe is 400 W/m<sup>2</sup>-°C. Determine the combined convection and radiation heat transfer coefficient at the outer surface of the pipe. - (i) सम्पूर्ण तथा स्पेक्ट्रमी कृष्णिका उत्सर्जक शक्तियों को परिभाषित कीजिये। ये एक-दूसरे से किस प्रकार (e) सम्बन्धित हैं? - (ii) दो समरूप पिण्डों पर विचार कीजिये, जिनमें एक 1000 K तथा दूसरा 1500 K पर है। लघु तरंगदैर्घ्य क्षेत्र में कौन-सा पिण्ड ज्यादा विकिरण उत्सर्जित करता है? 20 μm के तरंगदैर्घ्य पर कौन-सा पिण्ड ज्यादा विकिरण उत्सर्जित करता है? - (i) Define the total and spectral black body emissive powers. How are they related to each other? - (ii) Consider two identical bodies, one at 1000 K and the other at 1500 K. Which body emits more radiation in the shorter wavelength region? Which body emits more radiation at a wavelength of 20 µm? - (a) समान वायुमण्डलीय दाब पर 20 °C के 10 g जल को -10 °C की बर्फ में बदला जाता है। द्रव जल की विशिष्ट ऊष्मा 4·2 J/g-K को स्थिर मानते हुए तथा बर्फ की इसकी आधी व 0 °C पर बर्फ की संगलन गुप्त ऊष्मा 335 J/g लेते हुए निकाय की सम्पूर्ण एन्ट्रॉपी परिवर्तन की गणना कीजिये। 10 10 10 g of water at 20 °C is converted into ice at -10 °C at constant atmospheric pressure. Assuming the specific heat of liquid water to remain constant at fusion of ice at 0 °C to be 335 J/g, calculate the total entropy change of the system. 20 (b) 5 cm व्यास का एक शाफ्ट, ढलवाँ लोहे की बनी एक बेयिंग में घूम रहा है। शाफ्ट 4500 r.p.m. पर घूमता है। बेयिंग 15 cm लम्बी, 8 cm बाह्य व्यास की है तथा इसकी ऊष्मीय चालकता 70 W/m-K है। शाफ्ट तथा बेयिंग के बीच में 0.6 mm का समान अन्तराल है। अन्तराल, 0.14 W/m-K की ऊष्मीय चालकता तथा 0.03 N-s/m² की गतिक श्यानता वाले स्नेहक तेल से भरा हुआ है। बेयिंग को एक द्रव द्वारा बाहर से ठंडा किया जाता है तथा उसकी बाहरी सतह 40 °C पर अनुरक्षित की गई है। शाफ्ट में ऊष्मा चालन की उपेक्षा करते हुए तथा केवल एक-आयामी ऊष्मा अंतरण मानते हुए, निर्धारण कीजिये (i) शीतलक की ऊष्मा अन्तरण दर, (ii) शाफ्ट की सतह का तापमान तथा (iii) स्नेहक तेल में श्यान क्षय के कारण यांत्रिक शक्ति का क्षरण। A shaft having diameter of 5 cm rotates in a bearing made of cast iron. The shaft rotates at 4500 r.p.m. The bearing is 15 cm long, 8 cm outer diameter and has thermal conductivity of 70 W/m-K. There is a uniform clearance between the shaft and the bearing of 0.6 mm. The clearance is filled with a lubricating oil having thermal conductivity of 0.14 W/m-K and dynamic viscosity of 0.03 N-s/m<sup>2</sup>. The bearing is cooled externally by a liquid, and its outer surface is maintained at 40 °C. Disregarding the heat conduction through the shaft and assuming only one-dimensional heat transfer, determine (i) the rate of heat transfer to the coolant, (ii) the surface temperature of the shaft and (iii) the mechanical power wasted by the viscous dissipation in the lubricating oil. - (i) मात्रा प्रवाह दर; - (ii) स्तब्ध तापमान; - (iii) मैक संख्या: - (iv) स्तब्ध दाब, प्रवाह को (1) सम्पीड्य तथा (2) असम्पीड्य मानते हुए। Air $(C_p = 1.05 \text{ kJ/kg-K}, \gamma = 1.38)$ at 3 bar pressure and T = 600 K is flowing with a velocity of 180 m/s inside a 20 cm diameter duct. Calculate the - (i) mass flow rate; - (ii) stagnation temperature; - (iii) Mach number; - (iv) stagnation pressure assuming flow to be (1) compressible and (2) incompressible. CRNA-S-MCHE/19 - 3. (a) (i) एक गैस टरबाइन में विशिष्ट उत्पादित कार्य तथा दक्षता, दाब अनुपात के साथ किस प्रकार बदलते हैं? - (ii) सिद्ध कीजिये कि एक गैस टरबाइन की दक्षता, एक ब्रेटन चक्र के लिये अधिकतम कृत कार्य के तदनुसार, $$\eta_{w\,\mathrm{max}} = 1 - \frac{1}{\sqrt{t}}$$ जहाँ t अधिकतम और न्यूनेतम तापमानों का अनुपात है। - How do the specific work output and efficiency vary with pressure ratio in a gas turbine? - (ii) Prove that the efficiency of a gas turbine corresponding to the maximum work done in a Brayton cycle is given by the relation $$\eta_{w \max} = 1 - \frac{1}{\sqrt{t}}$$ where t is the ratio of the maximum and minimum temperatures. 20 (b) नीचे चित्र 3(b) में दिखाये गये एक सौर संग्राहक, जिसकी विमार्थे 1 m चौड़ी तथा 5 m लम्बी हैं, में शीशे के आवरण तथा संग्राहक पट्टिका के बीच 3 cm का समान अंतराल है। संग्राहक में, 30 °C पर 0·15 m³/s की दर से वायु 1 m चौड़े किनारे से प्रविष्ट होती है तथा 5 m लम्बे गिलयारे में एक छोर से दूसरे तक प्रवाहित होती है। यदि शीशे के आवरण तथा संग्राहक पट्टिका के औसत तापमान क्रमशः 20 °C तथा 60 °C हों, तो निर्धारित कीजिये (i) संग्राहक में, वायु में, कुल ऊष्मा संचरण दर और (ii) संग्राहक में प्रवाहित होने पर वायु की तापमान वृद्धि। 1 atm तथा अनुमानित औसत तापमान 35 °C पर वायु के गुणधर्म निम्न प्रकार लिये जा सकते हैं : $$\rho = 1.145 \text{ kg}/\text{m}^3$$ , $k = 0.02625 \text{ W/m}\text{-°C}$ , $v = 1.655 \times 10^{-5} \text{ m}^2/\text{s}$ , $C_p = 1007 \text{ J/kg}\text{-°C}$ , $Pr = 0.7268$ A solar collector, as shown in Fig. 3(b) below, having dimensions as 1 m wide and 5 m long, has constant spacing of 3 cm between the glass cover and the collector plate. Air enters the collector at 30 °C and at a rate of $0.15 \, \mathrm{m}^3/\mathrm{s}$ through the 1 m wide edge and flows along the 5 m long passageway. If the average temperatures of the glass cover and the collector plate are 20 °C and 60 °C, respectively, determine (i) the net rate of heat transfer to the air in the collector and (ii) the temperature rise of air as it flows through the collector. Fig. 3(b) The properties of air at 1 atm and an estimated average temperature of 35 °C may be taken as: $$\rho = 1.145 \text{ kg / m}^3$$ , $k = 0.02625 \text{ W/m-°C}$ , $v = 1.655 \times 10^{-5} \text{ m}^2/\text{s}$ , $C_p = 1007 \text{ J/kg-°C}$ , $Pr = 0.7268$ $\sqrt{ m v}$ क कार के एक हवारोधी शीशा, जिसकी विमार्ये 0·6 ${f m}$ ऊँची तथा ${f 1·8}$ ${f m}$ लम्बी हैं, को वैद्युतीय रूप से ${f m}$ किया जाता है तथा यह 1 atm, 0 °C तथा 80 km/hr की समानान्तर हवाओं के अधीन है। वैद्युत शक्ति की खपत 50 W देखी गई, जबकि हवारोधी शीशे की उजागर सतह का तापमान 4 °C है। अन्दर की सतह से होने वाले ऊष्मा अंतरण और विकिरण की उपेक्षा करते हुए तथा संवेग ऊष्मा अंतरण सादृश्य को प्रयोग में लेते हुए, हवारोधी शीशे पर हवा द्वारा लगाये जाने वाले विकर्ष बल को निर्धारित कीजिये। 1 atm तथा 0 °C पर वायु के गुणधर्म निम्न प्रकार से लिये जा सकते हैं : $$\rho = 1.292 \text{ kg}/\text{m}^3$$ , $C_p = 1.006 \text{ kJ/kg-K}$ , $Pr = 0.7362$ A windshield of a car, having dimensions as 0.6 m high and 1.8 m long, is electrically heated and is subjected to parallel winds at 1 atm, 0 °C and 80 km/hr. The electrical power consumption is observed to be 50 W, when the exposed surface temperature of the windshield is 4 °C. Disregarding the radiation and heat transfer from the inner surface and using the momentum heat transfer analogy, determine the drag force the wind exerts on the windshield. The properties of air at 0 and atm may be taken as: $$\rho = 1.292 \text{ kg/m}^3$$ , $C_p = 1.006 \text{ kJ/kg-K}$ , $Pr = 0.7362$ औसत फलक (ब्लेड) वलय व्यास 500 mm वाली एक एकल-चरण आवेगी टरबाइन का रोटर 10000 r.p.m. की गति से घूमता है। नॉजल कोण 20° है तथा नॉजल से भाप 900 m/s के वेग से बाहर निकलती है। फलक समानकोणिक हैं तथा फलक घर्षण गुणक 0.85 है। फलकों के लिये वेग आरेख बनाइये तथा भाप की प्रघात-रहित प्रविष्टि के लिये फलकों पर प्रवेश का कोण मालूम कीजिये। यह भी मालूम कीजिये (i) भाप प्रवाह 750 kg/hr के लिये आरेख शक्ति, (ii) आरेख दक्षता, (iii) अक्षीय प्रणोद और (iv) गतिन ऊर्जी की A single-stage impulse turbine rotor has a mean blade ring diameter of 500 mm and rotates at a speed of 10000 500 mm and rotates at a speed of 10000 r.p.m. The nozzle angle is 20° and the steam leaves the pozzles with steam leaves the nozzles with a velocity of 900 m/s. The blades are 20 V 82 = 0 -85 Vny equiangular and the blade friction factor is 0.85. Construct velocity diagrams for the blades and determine the inlet angle of the blades for shockless entry of steam. Also, determine (i) the diagram power for a steam flow of 750 kg/hr, (ii) the diagram efficiency, (iii) the axial thrust and (iv) the loss of kinetic energy due to friction. 20 एक अपकेन्द्री सम्पीडक के निष्पादन पर प्रणोदक के फलक (ब्लेड) की आकृति के प्रभाव को, एक निर्गम वेग आरेख तथा दाब अनुपात-मात्रा प्रवाह दर वक्र की सहायता से समझाइये। (b) अपकेन्द्री सम्पीडकों में प्रोत्कर्षण व प्ररोधन घटनाओं को समझाइये। (i) Explain the effect of impeller blade shape on the performance of a centrifugal compressor with the help of an exit velocity diagram and Discuss the phenomena of surging and choking in centrifugal compressors. 20 एक कोश तथा नलिका ऊष्मा विनिमयित्र दो कोश पथ तथा चार नलिका पथ के साथ कार्यरत हैं। कोश की ओर का द्रव एथिलीन ग्लाइकॉल है, जो 140 °C पर प्रविष्ट होता है तथा 80 °C पर 4500 kg/hr की प्रवाह दर से बाहर निकलता है। निलकाओं में प्रवाहित जल, 35°C पर प्रविष्ट हो रहा है तथा 85°C पर बाहर निकल (c) रहा है। इस व्यवस्था के लिये समग्र ऊष्मा अंतरण गुणांक 850 W/m²-°C है। वांछित जल-प्रवाह दर की तथा ऊष्मा विनिमयित्र के क्षेत्रफल की गणना कीजिये। एथिलीन ग्लाइकॉल की विशिष्ट ऊष्मा 2·742 J/g-°C तथा जल की विशिष्ट ऊष्मा 4·175 J/g-°C ली जा सकती है। एन० टी० यू० सम्बन्धों के लिये निम्न आरेख उपयोग A shell and tube heat exchanger operates with two shell passes and four tube passes. The shell side fluid is ethylene glycol, which enters at 140 °C and leaves at 80 °C with a flow rate of 4500 kg/hr. Water flows in the tubes, entering at 35 °C and leaving at 85 °C. The overall heat transfer coefficient for this arrangement is 850 W/m<sup>2</sup>-°C. Calculate the flow rate of water required and the area of the heat exchanger. The specific heat of ethylene glycol may be taken as 2.742 J/g-°C and the specific heat of water may be taken as 4.175 J/g-°C. For NTU relations, the following figure may be used. Number of transfer units, $NTU_{max} = AU/C_{min}$ ## खण्ड—B / SECTION—B क्या अल्कोहल आइ० सी० इंजन में ईंधन के रूप में प्रयुक्त हो सकता है? लाभ तथा हानियों के साथ समझाइये। Can alcohols be used as fuel in IC engine? Explain with advantages and (a) 5. $1 \text{ m}^3$ आयतन वाले जल से भरे एक रिऐक्टर, जो कि 20 MPa तथा 360 °C पर है, को चित्र 5(b) के अनुसार एक नियंत्रण कक्ष में रखा गया है। कक्ष अच्छी तरह से रोधित है तथा इसे आरम्भ में निर्वात किया गया है। असफलता के कारण रिऐक्टर फट जाता है तथा नियंत्रण (कॉन्टेनमेन्ट) कक्ष में जल भर जाता है। कक्ष का न्यूनतम आयतन ज्ञात कीजिये जिससे कि अन्तिम दाब 200 kPa से अधिक न हो। [इस पत्र के अन्त में दी हुई भाप (स्टीम) सारणी में दत्त सामग्री का उपयोग कीजिये] 10 A water-filled reactor with a volume of 1 m<sup>3</sup> is at 20 MPa and 360 °C, and is placed inside a containment room as shown in Fig. 5(b). The room is well-insulated and initially evacuated. Due to a failure, the reactor ruptures and the water fills the containment room. Find the minimum room volume so that the final pressure does not exceed 200 kPa. [Use steam table data given at the end of the Paper] (c) एक योजनाबद्ध तथा T-s आरेख का उपयोग करते हुए समझाइये कि कैसे आदर्श पुनर्जनन वाले एक साधारण भाप शक्ति संयंत्र (रैंकिन) चक्र की तापीय दक्षता, कार्नो दक्षता के सदृश हो सकती है। Using a schematic and T-s diagram, explain how with perfect regeneration for a simple steam power plant (Rankine) cycle, thermal efficiency can approach Carnot efficiency. - (d) $\sqrt{t}$ क वाष्प संपीडन प्रशीतन तंत्र के निष्पादन पर निम्न प्राचर्लों से पड़ने वाले प्रभाव की विवेचना p-h आरेख की सहायता से कीजिये : - (i) चूषण दाब - (ii) प्रदान दाब - (iii) द्रव का उपशीतन - (iv) वाष्प का अतितापन Discuss the effect of the following parameters on the performance of a vapor compression refrigeration system with the help of p-h diagram: - (i) Suction pressure - (ii) Delivery pressure - (iii) Subcooling of liquid - (iv) Superheating of vapors 10 (e) एक कमरे की वायु $40~\mathrm{m}^3$ प्रति मिनट की दर पर पुनःसंचारित की जाती है तथा $32~\mathrm{^{\circ}C}$ DBT और $18~\mathrm{^{\circ}C}$ WBT अवस्था वाली बाहरी वायु एक वातानुकूलक की शीतलन कुण्डली में प्रविष्ट होती है। कुण्डली का प्रभावी सतह तापमान 4·5 °C है। कुण्डली की सतह का क्षेत्रफल इस प्रकार है कि यह वायु के प्रवेश की दी हुई अवस्था के लिये 12 kW का शीतलन प्रदान करेगी। कुण्डली से बाहर जाने वाली वायु का DBT तथा WBT और कुण्डली के बाइपास गुणक का निर्धारण कीजिये। [इस् पत्र के अन्त में साइक्रोमीट्रिक चार्ट दिया गया है] The room air is recirculated at the rate of 40 m<sup>3</sup> per minute and the outdoor air enters a cooling coil of an air conditioner at 32 °C DBT and 18 °C WBT. The effective surface temperature of the coil is 4.5 °C. The surface area of the coil is such as would give 12 kW of refrigeration with the given entering conditions of air. Determine the DBT and WBT of the air leaving the coil and the coil bypass [Psychrometric chart is given at the end of this Paper] factor. 6. (a) एक चार-सिलिन्डर डीजल इंजन, जिसका प्रसर्पित आयतन 0.98 लीटर है, का निष्पादन फर्श पर परीक्षण किया गया है। 2500 r.p.m. की चाल से चलने वाला इंजन 0·3 m भुजा के ब्रेक के प्रतिकूल 6·8 लीटर/घंटा की ईंधन खपत दर पर 190 N का ब्रेक भार उत्पादित करता है। ईंधन का कैलोरी मान 45000 kJ/kg तथा विशिष्ट गुरुत्व 0.82 है। 1, 2, 3, 4 के क्रम में पृथक्-पृथक् सिलिन्डर की ईंधन आपूर्ति रोककर तदनुसार ब्रेक भार 131 N, 135 N, 133 N तथा 137 N के क्रम में इंजन पर एक मोर्स परीक्षण किया गया। इंजन की इस परीक्षण चाल पर गणना कीजिये—ब्रेक शक्ति, ब्रेक माध्य प्रभावी दाब, ब्रेक तापीय दक्षता, ब्रेक विशिष्ट ईंधन खपत, सूचित शक्ति, यांत्रिक दक्षता तथा सूचित माध्य प्रभावी दाब। A four-cylinder diesel engine with swept volume of 0.98 litre is tested on a performance bed. The engine running at a speed of 2500 r.p.m. against a brake with arm of 0.3 m produces brake load of 190 N with fuel consumption of 6.8 litres/hr. The calorific value of fuel is 45000 kJ/kg and specific gravity of fuel is 0.82. A Morse test is carried out on the engine by cutting off the fuel supply of individual cylinder in the order 1, 2, 3, 4 with corresponding brake loads 131 N, 135 N, 133 N and 137 N, respectively. Calculate the b.p., b.m.e.p., brake thermal efficiency, b.s.f.c., i.p., mechanical efficiency and i.m.e.p. of the engine at test speed. (b) एक शक्ति संयंत्र, एक बन्द भरण-जल तापक के साथ एक पुनर्योजी भाप चक्र पर कार्य करता है। भाप प्रथम टरबाइन के चरण पर 125 बार, 500 °C पर प्रविष्ट होती है तथा 10 बार तक प्रसारित होती है, जहाँ कि कुछ भाप निकाल ली जाती है तथा बन्द भरण-जल तापक को भेज दी जाती है। भरण-जल तापक में स्थित संघनित सन्तृप्त द्रव के रूप में 10 बार पर एक ट्रैप में होता हुआ संघनित्र में पहुँचता है। तापक से भरण-जल 120 बार तथा 170 °C तापमान के साथ बाहर निकलता है। संघनित्र दाब 0.06 बार है। टरबाइन तथा पम्प कार्य को समएन्ट्रॉपी मानते हुए चक्र की तापीय दक्षता निर्धारित कीजिये। 125 बार, 500 °C पर भाप की एन्थैल्पी h = 3343.6 kJ/kg तथा एन्ट्रॉपी s = 6.4651 kJ/kg-K है। |इस पत्र के अन्त में दी हुई भाप सारणियों का प्रयोग कीजिये| 20 A power plant operates on a regenerative steam cycle with one closed feedwater A power plant operated and diverted and diverted the steam is extracted and diverted to heater. Steam entered and diverted to the closed to 10 bar, where some of the steam is extracted and diverted to the closed to 10 par, where some states the feedwater heater as saturated liquid feedwater heater. Condensate exiting the feedwater The feedwater teedwater meater. Condenser the feedwater exits the at 10 bar passes through a trap into the condenser. The feedwater exits the at 10 bar passes unload the state of 170 °C. The condenser pressure is heater at 120 bar with a temperature of 170 °C. The condenser pressure is neater at 120 02 mine and pump work, determine the thermal 0.06 bar. Assuming isentropic turbine and pump work, determine the thermal of the cycle. At 125 bar, 500 °C for steam, h = 3343.6 kJ/kg and $s = 6.4651 \, \text{kJ/kg-K}.$ 20 [Use steam tables provided at the end of this Paper] एक स्वच्छ चित्र की सहायता से $\mathrm{NH}_3$ -जलवाष्प अवशोषण प्रशीतन तंत्र को समझाइये। प्रशीतक-अवशोषक (c) Explain $NH_3$ -water vapor absorption refrigeration system with a neat diagram. What are the desired properties of refrigerant-absorber combination? - (i) एस॰ आइ॰ इंजन में HC, CO तथा $\mathrm{NO}_x$ उत्सर्जन के गठन की संक्षेप में विवेचना कीजिये। इन उत्सर्जकों की समतुल्य अनुपात पर निर्भरता को एक स्वच्छ चित्र की सहायता से समझाइये। **7.** (a) - (ii) एक आइ० सी० इंजन, जिसका वायु-ईंधन अनुपात (ए० एफ० आर०) 15 : 1 तथा सम्पीडन अनुपात 9 : 1 है, एक आदर्श ऑटो चक्र पर कार्यरत है। सम्पीडन के आरम्भ में दाब तथा तापमान क्रमशः 1 बार तथा 27°C हैं। चक्र के अधिकतम तापमान तथा दाब ज्ञात कीजिये। ऐसा मानिए कि सम्पीडन प्रक्रिया $pV^{1.33}=C$ नियम का पालन करती है, ईंधन का कैलोरी मान $43000~{ m kJ/kg}$ तथा कार्यकारी द्रव का $C_{\nu} = 0.717 \text{ kJ/kg-K}$ है। - Briefly discuss HC, CO and $\mathrm{NO}_x$ emission formation in SI engine. Explain the dependence of these emissions on equivalence ratio with a neat - (ii) An IC engine working on an ideal Otto cycle has AFR of 15:1 and compression ratio of 9:1. The pressure and temperature at the start of compression are 1 bar and 27 °C, respectively. Find the maximum temperature and pressure of the cycle. Assume that compression process follows the law $pV^{1.33} = C$ , the calorific value of fuel is 43000 kJ/kg and $C_v$ of working fluid is 0.717 kJ/kg-K. - (b) एक खाद्य प्रसंस्करण कक्ष का गुप्त ऊष्मा भार बहुत ज्यादा है तथा निम्न आँकड़ों वाला वातानुकूलन अपेक्षित है : कक्ष अभिकल्प अवस्था : 20 °C DBT, 60% RH बाह्य अवस्था : 45 °C DBT, 30 °C WBT कक्ष संवेद्य ऊष्मा : 35 kW कक्ष गुप्त ऊष्मा : 20 kW अपेक्षित संवातन वायु 90 cmm है गणना कीजिये (i) संवातन भार, (ii) कक्ष तथा प्रभावी संवेद्य ऊष्मा गुणक और (iii) ए० डी० पी० तथा मितव्ययी अभिकल्प के लिये पुनःतापन की मात्रा। कुण्डली का बाइपास गुणक 0.05 मानिये। [इस पत्र के अन्त में साइक्रोमीट्रिक चार्ट दिया हुआ है] 10 10 10 461714 1386as [ P.T.O. A food processing room has a very high latent heat load and is required to be air conditioned as per the following data: Room design conditions: 20 °C DBT, 60% RH Outside conditions: 45 °C DBT, 30 °C WBT ERIY = RSU+ BPE XOASI Room sensible heat: 35 kW Room latent heat: 20 kW The ventilation air requirement is 90 cmm Determine the Aventilation load, in room and effective sensible heat factors and (iii) ADP and amount of reheat for economical design. Assume to factor of the coil as 0.05. [Psychrometric chart is given at the end of this Paper] Table for Properties of Air | | | | | | k | ~ | | |------|----------------------|-----------|---------------------------|-----------------------|----------|-----------------------|-------| | T | ρ | $C_p$ | μ | ٧ | | α | Pr | | 1 | (kg/m <sup>3</sup> ) | (kJ/kg-K) | (kg/m-s×10 <sup>5</sup> ) | $(m^2/s \times 10^6)$ | (W/m-K) | $(m^2/s \times 10^4)$ | | | (K) | | | 0.6924 | 1.923 | 0.009246 | 0.02501 | 0.770 | | 100 | 3.9010 | 1.0266 | 1.0283 | 4.343 | 0.013735 | 0.05745 | 0.753 | | 150 | 2.3675 | 1.0099 | 1.3289 | 7.49 | 0.01809 | 0.10165 | 0.739 | | 200 | 1.7687 | 1.0061 | 1.488 | 9.49 | 0.02227 | 0.13161 | 0.722 | | 250 | 1.4128 | 1.0053 | 1.983 | 15.68 | 0.02624 | 0.2216 | 0.708 | | 300 | 1.1774 | 1.0057 | 2.075 | 20.76 | 0.03003 | 0.2983 | 0.697 | | 350 | 0.9980 | 1.0090 | 2.286 | 25.90 | 0.03365 | 0.3760 | 0.689 | | 400 | 0.8826 | 1.0140 | 2.284 | 28.86 | 0.03707 | 0.4222 | 0.683 | | 450 | 0.7833 | 1.0207 | 2.671 | 37.90 | 0.04038 | 0.5564 | 0.680 | | 500 | 0.7048 | 1.0295 | 2.848 | 44.34 | 0.04360 | 0.6532 | 0.680 | | 550 | 0.6423 | 1.0392 | 3.018 | 51.34 | 0.04649 | 0.7512 | 0.680 | | 600 | 0.5879 | 1.0551 | 3.018 | 58.51 | 0.04953 | 0.8578 | 0.682 | | 650 | 0.5430 | 1.0635 | | 66.25 | 0.05230 | 0.9672 | 0.684 | | 700 | 0.5030 | 1.0752 | 3.322 | | 0.05230 | 1.0774 | 0.686 | | 750 | 0.4709 | 1.0856 | 3.481 | 73.91 | | | 0.689 | | 800 | 0.4405 | 1.0978 | 3.625 | 82.29 | 0.05779 | 1.1951 | | | 850 | 0.4149 | 1.1095 | 3.765 | 90.75 | 0.06028 | 1.3097 | 0.692 | | 900 | 0.3925 | 1.1212 | 3.899 | 99.3 | 0.06269 | 1.4271 | 0.696 | | 950 | 0.3716 | 1.1321 | 4.023 | 108.2 | 0.06525 | 1.5610 | 0.699 | | 1000 | 0.3524 | 1.1417 | 4.152 | 117.8 | 0.06752 | 1.6779 | 0.702 | | 1100 | 0.3204 | 1.160 | 4.44 | 136.6 | 0.0732 | 1.969 | 0.704 | | 1200 | 0.2947 | 1.179 | 4.92 | 159·1 | 0.0782 | 2.251 | 0.707 | | 1300 | 0.2707 | 1.197 | 4.93 | 182.1 | 0.0837 | 2.583 | 0.705 | | 1400 | | 1.214 | 5.17 | 205.5 | 0.0891 | 2.920 | 0.705 | | 1500 | | 1.230 | 5.40 | 229.1 | 0.0946 | 3.262 | 0.705 | | 1600 | 0.2211 | 1.248 | 5.63 | 254.5 | 0.100 | 3.609 | 0.705 | एक वाष्पित्र (बॉयलर) में, प्राकृतिक प्रवात की अवस्था के लिये, गणितीय रूप से सिद्ध कीजिये कि एक निश्चित ऊँचाई तथा अनुप्रस्थ काट की चिमनी में, अधिकतम निस्सरण के लिये, गैसों के निरपेक्ष तापमान का बाह्य वातावरण के निरपेक्ष तापमान से एक निश्चित अनुपात वाला सम्बन्ध होता है। N2 MTg Poto Pg2 m+1 Prove mathematically that for maximum discharge through a chimney of a certain height and cross-section, the absolute temperature of gases bears of natural draught of a boiler. of natural triangers of a power. 3. (a) 60 kW के एक सम्पीडक से चलने वाले एक वाष्प सम्पीडन प्रशीतन (वी॰ सी॰ आर॰) चक्र प्रशीतित्र का निष्पादन गुणांक (सी॰ ओ॰ पी॰) 6·0 है। सन्तृप्त द्रव तथा सन्तृप्त प्रशीतक वाष्प की एन्थैल्पी, 35°C के प्रशीतक वाष्प की एन्थैल्पी 275·76 kJ/kg है। सम्पीडक के निर्गम पर प्रशीतक का तापमान ज्ञात कीजिये। प्रशीतक का $C_p = 0.62 \text{ kJ/kg-K}$ है। EntyTa Pagua Pg 2 A VCR cycle refrigerator driven by a 60 kW compressor has a COP of $6\cdot0$ . The enthalpies of saturated liquid and saturated vapor refrigerant at condenser temperature of 35 °C are $114\cdot95 \text{ kJ/kg}$ and $283\cdot89 \text{ kJ/kg}$ , respectively. The saturated refrigerant vapor leaving evaporator has an enthalpy of $275\cdot76 \text{ kJ/kg}$ . Find the temperature of refrigerant at the exit of compressor. The $C_p$ of refrigerant is 0.62 kJ/kg-K. (b) एक गैस टरबाइन-भाप टरबाइन संयुक्त शक्ति संयंत्र में, विवृत चक्र गैस टरबाइन की निकास गैस, भाप चक्र के भार जिनत्र को आपूर्ति की जाती है, जिसमें गैस में अतिरिक्त ईंधन जलाया जाता है। गैस टरबाइन का दाब अनुपात 7.5 है, वायु का अन्तर्गम तापमान 15 °C तथा अधिकतम तापमान 750 °C है। अतिरिक्त ईंधन के दहन से गैस तापमान 750 °C तक बढ़ जाता है तथा भाप जिनत्र से गैस 100 °C पर निकलती है। भाप टरबाइन में भाप की आपूर्ति 50 बार तथा 600 °C पर की जाती है और संघिनत्र दाब 0.1 बार है। संयंत्र का कुल शिक उत्पादन 200 MW है। दहन किये गये ईंधन का कैलोरी मान 43.3 MJ/kg है। ईंधन की मात्रा प्रवाह दर के वायु प्रवाह पर पड़ने वाले प्रभाव को नगण्य मानते हुए, गणना कीजिये (i) वांछित वायु तथा भाप प्रवाह दर, (ii) गैस टरबाइन तथा भाप टरबाइन का शिक्त उत्पादन, (iii) संयुक्त शिक्त संयंत्र की तापीय दक्षता और (iv) वायु-ईंधन अनुपात। दहन गैसों के लिये $C_p = 1.11 \, \text{kJ/kg-K}$ तथा $\gamma = 1.33$ ; वायु के लिये $C_p = 1.005 \, \text{kJ/kg-K}$ तथा $\gamma = 1.4 \,$ लीजिये। पम्प कार्य नगण्य है। संघिनत की 0.1 बार पर एन्थैल्पी 192 kJ/kg लीजिये। [पृष्ठ संख्या 14 में मोलियर अपेख संलग्न है] In a combined gas turbine-steam turbine power plant, the exhaust gas from the open-cycle gas turbine is the supply gas to the steam generator of the steam cycle at which additional fuel is burnt in the gas. The pressure ratio for the gas turbine is 7.5, the air inlet temperature is 15 °C and the maximum temperature is 750 °C. Combustion of additional fuel raises the gas temperature to 750 °C and the gas leaves the steam generator at 100 °C. The steam is supplied to the steam turbine at 50 bar and 600 °C and the condenser pressure is 0.1 bar. The total power output of the plant is 200 MW. The calorific value of the fuel burnt is 43.3 MJ/kg. Neglecting the effect of the mass flow rate of fuel on the air flow, determine (i) the flow rate of air and steam required, (ii) the power outputs of the gas turbine and steam turbine, (iii) the thermal efficiency of the combined plant and (iv) the air-fuel ratio. Take $C_p = 1.11 \text{ kJ/kg-K}$ and $\gamma = 1.33$ for combustion gases; and $C_p = 1.005 \text{ kJ/kg-K}$ and $\gamma = 1.4$ for air. Neglect pump work. Condensate enthalpy at 0.1 bar = 192 kJ/kg. [Mollier diagram is attached in Page No. 14] (c) दो वाष्प शक्ति चक्रों को शृंखला में जोड़ा गया है जहाँ कि एक की लुप्त ऊष्मा, दूसरे द्वारा पूर्ण रूप से अवशोषित की जाती है। यदि अधियोजी चक्र की तापीय दक्षता $\eta_1$ हो तथा अधस्तलन चक्र की तापीय दक्षता $\eta_2$ हो, तो युगल-चक्र की दक्षता इन दक्षताओं के रूप में निर्धारित कीजिये। चक्रों को उत्क्रमणीय मानिये। Two vapor power cycles are coupled in series where heat lost by one is absorbed by the other completely. If $\eta_1$ is the thermal efficiency of the topping absorbed and $\eta_2$ is the thermal efficiency of the bottom cycle, determine the cycle and $\eta_2$ is the thermal efficiency of these efficiencies. Assume cycles to efficiency of the combined cycle in terms of these efficiencies. 10 \*\*\* n, 17, -n, n2