

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

<u>v</u> - v		
Q.1	If ' \rightarrow ' denotes increasing order of intensity, then the meaning of the words [drizzle \rightarrow rain \rightarrow downpour] is analogous to [\rightarrow quarrel \rightarrow feud].	
	Which one of the given options is appropriate to fill the blank?	
(A)	bicker	
(B)	bog	
(C)	dither	
(D)	dodge	

Q.2	Statements:		
	1. All heroes are winners.		
	2. All winners are lucky people.		
	Inferences:		
	I. All lucky people are heroes.		
	II. Some lucky people are heroes.		
	III. Some winners are heroes.		
	Which of the above inferences can be logically deduced from statements 1 and 2?		
(A)	Only I and II		
(B)	Only II and III		
(C)	Only I and III		
(D)	Only III		

Q.3	A student was supposed to multiply a positive real number p with another positive real number q . Instead, the student divided p by q . If the percentage error in the student's answer is 80%, the value of q is	
(A)	5	
(B)	$\sqrt{2}$	
(C)	2	
(D)	$\sqrt{5}$	
Q.4	If the sum of the first 20 consecutive positive odd numbers is divided by 20^2 , the result is	
(A)	1	
(B)	20	
(C)	2	
(D)	1/2	

Q.5	The ratio of the number of girls to boys in class VIII is the same as the ratio of the number of boys to girls in class IX. The total number of students (boys and girls) in classes VIII and IX is 450 and 360, respectively. If the number of girls in classes VIII and IX is the same, then the number of girls in each class is	
(A)	150	
(B)	200	
(C)	250	
(D)	175	

Q.6 – Q.10 Carry TWO marks Each

Q.6	In the given all the blanks		cs are numbere	ed (i)-(iv). Select the best match for	or
				for standing <u>(ii)</u> as an honoran ngs that stand <u>(iv)</u> the freedom of	
(A)	(i) out	(ii) down	(iii) in	(iv) for	
(B)	(i) down	(ii) out	(iii) by	(iv) in	
(C)	(i) down	(ii) out	(iii) for	(iv) in	
(D)	(i) out	(ii) down	(iii) by	(iv) for	

Q.7	Seven identical cylindrical chalk-sticks are fitted tightly in a cylindrical container. The figure below shows the arrangement of the chalk-sticks inside the cylinder.
	The length of the container is equal to the length of the chalk-sticks. The ratio of the occupied space to the empty space of the container is
(A)	5/2
(B)	7/2
(C)	9/2
(D)	3

Q.8	The plot below shows the relationship between the mortality risk of cardiovascular disease and the number of steps a person walks per day. Based on the data, which one of the following options is true?		
	1 T T T T T T T T T T T T T		
(A)	The risk reduction on increasing the steps/day from 0 to 10000 is less than the risk reduction on increasing the steps/day from 10000 to 20000.		
(B)	The risk reduction on increasing the steps/day from 0 to 5000 is less than the risk reduction on increasing the steps/day from 15000 to 20000.		
(C)	For any 5000 increment in steps/day the largest risk reduction occurs on going from 0 to 5000.		
(D)	For any 5000 increment in steps/day the largest risk reduction occurs on going from 15000 to 20000.		

Q.9	Five cubes of identical size and another smaller cube are assembled as shown in Figure A. If viewed from direction X, the planar image of the assembly appears as Figure B.	
	Figure A Figure B	
	If viewed from direction Y, the planar image of the assembly (Figure A) will appear as	
(A)		
(B)		
(C)		
(D)		

Q.10	Visualize a cube that is held with one of the four body diagonals aligned to the vertical axis. Rotate the cube about this axis such that its view remains unchanged. The magnitude of the minimum angle of rotation is	
(A)	120°	
(B)	60°	
(C)	90°	
(D)	180°	

Г

Q.11 – Q.35 Carry ONE mark Each

Q.11	Let $z = x + iy$ be a complex variable and \overline{z} be its complex conjugate. The equation $\overline{z}^2 + z^2 = 2$ represents a		
(A)	parabola		
(B)	hyperbola		
(C)	ellipse		
(D)	circle		
Q.12	The pressure drop across a control valve is constant. The control valve with inherent characteristic has decreasing sensitivity. If x represents the fraction of maximum stem position of the control valve, then the function $f(x)$ representing the fraction of maximum flow is		
(A)	α^{x-1} , where α is constant		
(B)	\sqrt{x}		
(C)	x		
(D)	x ²		

Q.13	A discrete-time sequence is given by $x[n] = [1, 2, 3, 4]$ for $0 \le n \le 3$. The zero lag auto-correlation value of $x[n]$ is
(A)	1
(B)	10
(C)	20
(D)	30

Q.14	Match the following measuring devices with their principle of measurement.		
	Measuring Device	Principle of Measurement	
	(P) Optical pyrometer	(I) Variation in mutual inductance	
	(Q) Thermocouple	(II) Change in resistance	
	(R) Strain gauge	(III) Wavelength of radiated energy	
	(S) Linear variable differential transformer	(IV) Electromotive force generated by two dissimilar metals	
(A)	(P) - (III), (Q) - (IV), (R) - (II), (S) - (I)		
(B)	(P) - (IV), (Q) - (III), (R) - (II), (S) - (I)		
(C)	(P) - (III), (Q) - (I), (R) - (IV), (S) - (II)		
(D)	(P) - (II), (Q) - (IV), (R) - (I), (S) - (III)		

Q.15 The capacitor shown in the figure has parallel plates, with each plate having an area A. The thickness of the dielectric materials are d_1 and d_2 and their relative permittivities are ε_1 and ε_2 , respectively. Assume that the fringing field effects are negligible and ε_0 is the permittivity of free space.

Q.16	Among the given options, the simplified form of the Boolean function $F = (A + \overline{A}.B) + \overline{A}.(A + \overline{B}).C$ is
(A)	A + B + C
(B)	A. B. C
(C)	$B + \overline{A}.C$
(D)	$\overline{A} + B.C$
Q.17	Consider the state-space representation of a system
	$\dot{x} = Ax + Bu$ where x is the state vector, u is the input, A is the system matrix and B is the input matrix. Choose the matrix A from the following options such that the system has a pole at the origin.
(A)	$\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$
(B)	$\begin{bmatrix} 1 & -1.5 \\ -2 & 3 \end{bmatrix}$
(C)	$\begin{bmatrix} 1 & 1.5 \\ 2 & -3 \end{bmatrix}$
(D)	$\begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$

Q.18	The sinusoidal transfer function corresponding to the polar plot shown in the figure, for $T > 0$, is
	Im 1 $\omega = 0$ Re $\omega \to \infty$
(A)	$1 - j\omega T$
(B)	$\frac{1-j\omega T}{1+j\omega T}$
(C)	$1 + j\omega T$
(D)	$\frac{1}{1+j\omega T}$

Q.19	A matrix <i>M</i> is constructed by stacking three column vectors v_1, v_2, v_3 as
	$M = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}.$
	Choose the set of vectors from the following options such that $rank(M) = 3$.
(A)	$v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}, v_3 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$
(B)	$v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$
(C)	$v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$
(D)	$v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}$

Q.20	The capacitance formed between two concentric spherical metal shells having radii x and y with $y > x$ is
	Note : ϵ is the permittivity of the medium between the shells.
(A)	$4\pi\epsilon\left(\frac{xy}{y-x}\right)$
(B)	$4\pi\epsilon\left(\frac{x^2}{y-x}\right)$
(C)	$4\pi\epsilon\left(\frac{y^2}{y-x}\right)$
(D)	$4\pi\epsilon\left(\frac{y^2-xy}{x}\right)$
Q.21	A linear transducer is calibrated for the ranges shown in the figure. The gain of the transducer is $mA/^{\circ}C$ (rounded off to two decimal places).
	Transducer
	50 °C – 150 °C Temperature Sensor Current Transmitter 4 mA – 20 mA

Q.24	Figure shows an amplifier using an NMOS transistor. Assume that the transistor is in saturation with device parameters, $\mu_n C_{ox} = 250 \ \mu A/V^2$, threshold voltage $V_T = 0.65 \ V$ and $W/L = 4$. Ignore the channel length modulation effect. The drain current of the transistor at the operating point is μA (rounded off to nearest integer).
	$3.3 V$ $3.3 k\Omega$ $3.3 k\Omega$ C_{large} V_{in} C_{large}
Q.25	The number of complex multiplications required for computing a 16-point DFT using the decimation-in-time radix-2 FFT is (in integer).
Q.26	A 3 × 3 matrix <i>P</i> with all real elements has eigenvalues $\frac{1}{4}$, 1, and -2. The value of $ P^{-1} $ is (rounded off to nearest integer).
Q.27	The Nyquist sampling frequency for $x(t) = 10 \sin^2(200\pi t)$ is Hz (rounded off to nearest integer).

Q.33	The switch in the following figure has been closed for a long time $(t < 0)$. It is opened at $t = 0$ seconds. The value of dv_c/dt at $t = 0^+$ is V/s (rounded off to nearest integer).
	$i_{L}(t)$ 4Ω $0.25 H$ $12 V$ $t = 0$ Switch $i_{L}(t)$ $V_{c}(t)$ $V_{c}(t)$ $0.1 F$
Q.34	Consider a system given by the following first order differential equation: $\frac{dy}{dt} = y + 2t - t^2$
	where, $y(0) = 1$ and $0 \le t < \infty$. Using a step size $h = 0.1$ for the improved Euler method, the value of $y(t)$ at $t = 0.1$ is (rounded off to two decimal places).
Q.35	Indian Premier League has divided the sixteen cricket teams into two equal pools: Pool-A and Pool-B. Four teams of Pool-A have blue logo jerseys while the rest four have red logo jerseys. Five teams of Pool-B have blue logo jerseys while the rest three have red logo jerseys.
	If one team from each pool reaches the final, the probability that one team has a blue logo jersey and another has a red logo jersey is (rounded off to one decimal place).

Q.36 – Q.65 Carry TWO marks Each

Q.36	A wire of circular cross section with radius <i>a</i> is shown in the figure. The current density is given by $\mathbf{J} = ks^2$, where <i>k</i> is a constant, <i>s</i> is the radial distance from the axis and $0 \le s \le a$. The total current <i>I</i> in the wire is
	$\begin{array}{c} a \\ \hline \\ \hline \\ \hline \\ \hline \\ I \end{array} \end{array} $ Axis
(A)	$\frac{\pi k a^4}{2}$
(B)	$\frac{2\pi k a^3}{3}$
(C)	$\frac{\pi k a^3}{2}$
(D)	$\frac{\pi k a^4}{4}$

Q.37	The measured values from a flow instrument, whose range is between 0 and 2 flow units, are shown in the histogram. The systematic error (bias) and the maximum error (in flow units), respectively are
(A)	0.12 and 0.14
(B)	0.01 and 0.10
(C)	0.10 and 0.14
(D)	0.04 and 0.12

Q.38	Consider a discrete-time sequence
	$x[n] = \begin{cases} (0.2)^n, & 0 \le n \le 7\\ 0, & \text{otherwise} \end{cases}$
	The region of convergence of $X(z)$, the z-transform of $x[n]$, consists of
(A)	all values of z except $z = 0.2$
(B)	all values of z
(C)	all values of z except $z = 0$
(D)	all values of z except $z = \infty$

Г

Т

Q.39	In the bridge circuit shown in the figure, under balanced condition, the values of R and C respectively, are
	¹ H ₀ ¹ H ₀
(A)	1.010 Ω and 19.802 μ F
(B)	9.901 Ω and 0.505 μ F
(C)	19.802 Ω and 1.01 μ F
(D)	39.604 Ω and 2.02 μ F

Q.40	Laplace transform of a signal $x(t)$ is
	$X(s) = \frac{1}{s^2 + 13s + 42}$
	Let $u(t)$ be the unit step function. Choose the signal $x(t)$ from the following options if the region of convergence is $-7 < \text{Re}\{s\} < -6$.
(A)	$-e^{-6t}u(t) - e^{-7t}u(-t)$
(B)	$-e^{-6t}u(-t) - e^{-7t}u(t)$
(C)	$e^{-6t}u(t) - e^{-7t}u(-t)$
(D)	$-e^{-6t}u(-t) - e^{-7t}u(-t)$

 $\begin{array}{|c|c|c|c|c|c|} Q.41 & In the figure shown, both the opamps A_1 and A_2 are ideal, except that the opamp A_1 has an offset voltage (V_{os}) of 1 mV. For V_{in} = 0 V, the values of the output voltages V_{out1} and V_{out2}, respectively, are \\ \end{array}$

Q.42 In the figure shown, the positive edge triggered D flip-flops are initially reset to Q = 0. The logic gates and the multiplexers have no propagation delay. After reset, a train of clock pulses (CLK) are applied. The logic-states of the inputs DIN, S and the clock pulses are also shown in the figure. Assuming no timing violations, the sequence of output Y from the 3rd clock to the 5th clock, $Y_3Y_4Y_5$ is

Q.44	Consider the feedback control system shown in the figure. The steady-state error $e_{ss} = \lim_{t \to \infty} (r(t) - y(t)) \text{ due to unit step reference } r(t) \text{ is}$
	$\xrightarrow{r} \underbrace{1}_{S(s+1)} \xrightarrow{y} \underbrace{K}_{K}$
(A)	$\frac{K-1}{K}$
(B)	$\frac{1}{2}$
(C)	0
(D)	$\frac{1-K}{K}$

X

Q.46	Let <i>C</i> be the closed curve in the <i>xy</i> -plane, traversed in the counterclockwise direction along the boundary of the rectangle with vertices at $(0,0), (2,0), (2,1), (0,1)$. The value of the line integral				
	$\oint_C (-e^y dx + e^x dy)$				
(A)	$e^2 + 2e - 3$				
(B)	$e^2 - 2e - 3$				
(C)	$e^2 + e - 1$				
(D)	$e^2 + e + 1$				

Q.49	The complex functions $f(z)$ = are both analytic in a given following.					
(A)	$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$					
(B)	$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \neq 0$					
(C)	$\frac{df(z)}{dz} = 0$					
(D)	$\frac{df(z)}{dz} \neq 0$					
Q.50	The readings recorded from a 20-psig pressure gauge are given in the Table. The regression line obtained for the data is $y = 0.04 x + 10.32$. The regression coefficient of determination, $R^2 = $ (rounded off to three decimal places).					
	x 1	2	3	4	5	
	y (psig) 10.3	10.5	10.4	10.5	10.5	

Q.57	In the figure shown, the diode current is given by $I_D = I_S e^{\frac{\alpha V_D}{T}}$. V_D is the diode voltage in volts, <i>T</i> is the absolute temperature in Kelvin, $\alpha = 1.16 \times 10^4$ K/V, and $I_S = 10^{-15}$ A is the saturation current. The dc current source, opamp and the resistors are ideal, and are assumed to be temperature independent. The change in the output voltage (V _{out}) per Kelvin change in temperature is mV (rounded off to one decimal place).				
	$\bigvee_{DD} \underbrace{250 \text{ nA}}_{VCC} \underbrace{V_{CC}}_{V_{out}} \underbrace{V_{CC}}_{R} \underbrace{V_{CC}}_{SR} \underbrace{V_{out}}_{SR}$				
Q.58	An ADC has a full scale voltage of 1.4 V, resolution of 200 mV, and produces binary output data. The input signal of the ADC has a bandwidth of 500 MHz, and it samples the data at the Nyquist rate. The parallel data output is converted to a serial bit stream using a parallel-to-serial converter. The data rate at the output of the parallel-to-serial converter is Gbps (rounded off to nearest integer).				

Q.61	A 50 kVA transformer has an efficiency of 95% at full load and unity power factor. Assume the core losses are negligible. The efficiency of the transformer at 75% of the full load and 0.8 power factor is% (rounded off to one decimal place).
Q.62	A three-phase squirrel-cage induction motor has a starting torque of 100% of the full load torque and a maximum torque of 300% of the full load torque. Neglecting the stator impedance, the slip at the maximum torque is% (rounded off to two decimal places).
Q.63	Two magnetically coupled coils, when connected in series-aiding configuration, have a total inductance of 500 mH. When connected in series-opposing configuration, the coils have a total inductance of 300 mH. If the self-inductance of both the coils are equal, then the coupling coefficient is (rounded off to two decimal places).
Q.64	The solution of an ordinary differential equation $y''' + 3y'' + 3y' + y = 30e^{-t}$ is $y(t) = (c_0 + c_1t - c_2t^2 + c_3t^3)e^{-t}$
	Given $y(0) = 3$, $y'(0) = -3$ and $y''(0) = -47$, the value of $(c_0 + c_1 + c_2 + c_3)$ is(rounded off to nearest integer).
	Note: $y''' = d^3y/dt^3$, $y'' = d^2y/dt^2$, $y' = dy/dt$ and c_0 , c_1 , c_2 , c_3 are constants.

Q.65 A random variable X has a probability density function
$$f_X(x) = \begin{cases} e^{-x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$
The probability of X > 2 is _____ (rounded off to three decimal places).

